Randomly Sampling Grid Diagrams of Knots

Shawn Witte ${ }^{1}$, Reuben Brasher ${ }^{2}$, and Mariel Vazquez ${ }^{1,3}$

${ }^{1}$ UC Davis Mathematics, ${ }^{2}$ Microsoft, ${ }^{3}$ UC Davis Microbology and Molecular Genetics

Grid Diagrams

A grid diagram of a link is an $n \times n$ lattice where each row and each column has exactly one " O " and one ' X ', where the entries in every row and column are connected so the vertical lines are overcrossings and the horizontal lines are undercrossings.
The following is an example of a trefoil in a 5×5 grid

The following theorems due to [1] are essential:

Theorem 1

Every link can be represented in a grid diagram

Theorem 2

If g and g^{\prime} are two grid diagrams of the same link, then there exists a finite sequence of "Cromwell Moves" which takes g to g^{\prime}

Purpose of the Algorithm

DNA knots appear to favor chiral configurations. One way of studying chirality is to examine writhe of a knot. In particular, we would like to know how the average of writhes of different configurations of the same knot behaves. To this end, the algorithm is designed generate random diagrams of a given link type, so we may sample many independent diagrams of that link for writhe calculations. This algorithm is modeled after the BFACF algorithm which operates on self-avoiding polygons in $\mathbb{Z}^{3}[2]$.

Cromwell Moves

There are four Cromwell moves:
-Translation: Moving each element of a grid cyclically up/down/left/right:

(2)Commutation: Swapping two non-"interleaved" adjacent rows or columns of a grid

3Stabilization: Replacing an entry in the grid with a 2×2 subgrid with three entries
4 Destabilization: The inverse of stabilization.

For the case of commutation, we must ensure that the rows/columns are not interleaved:

Grid Algorithm

The following is a Markov chain Monte Carlo algorithm for sampling random grids of a specific link type:
(1) Start with any initial grid g_{0} with link type L. (2) Choose an X or O from g_{t} uniformly at random. (3) Choose a non-translation cromwell move σ with probability $p_{\left|g_{t}\right|}\left(\left|\sigma\left(g_{t}\right)\right|-\left|g_{t}\right|\right)$ (4) If σ is a valid Cromwell move, then set $g_{t+1}=\sigma\left(g_{t}\right)$, else $g_{t+1}=g_{t}$.
© Increase t by one, and return to step 2

Distribution and Transition

Probabilities
We would like to sample a link type uniformly from a chosen grid size. Hence, the probability of a getting a particular $n \times n$ grid diagram g should depend only on n (where g is an $n \times n$ grid) and some scaling parameter. We choose a distribution

$$
\pi(g)=\frac{f(|g|, z)}{N(z)}
$$

where $N(z)$ is a normalizing factor:

$$
N(z)=\sum_{n=0}^{\infty} f(n, z) \cdot\left|G_{n}(L)\right|
$$

Any choice of f for which N converges is a valid choice. $\mid G_{n}(L)=$ number of $n \times n$ grid diagram of link type L. $\left|G_{n}(L)\right|$ is difficult to estimate, how ever it is necessarily less than the number of grid diagrams representing links with the same numbe of components, given by

$$
\sum_{k_{1}=2}^{n-2(c-1)} \cdots \sum_{k_{j}=2}^{n-2(c-j)-\sum_{i=1}^{j-1} k_{i}} \cdots \sum_{k_{c-1}=2}^{n-2-\sum_{i=1}^{c-1} k_{i}} \frac{n!(n-1)!}{\prod_{l=1}^{c-1}\left(n-\sum_{m=1}^{l} k_{m}\right)}
$$

Specifically, for knots $\left|G_{n}(L)\right|<n!(n-1)$!, so we may use

$$
f(n, z)=\frac{2 n z^{n}}{n!(n-1)!}
$$

To ensure convergence to this distribution, we also have

$$
p_{n}(+1)=\frac{z}{(n+1) n} p_{n+1}(-1)
$$

and

$$
4 p_{n}(+1)+4 p_{n}(0)+p_{n}(-1) \leq 1
$$

Numerical Results for Grids

To understand the distribution from which the algorithm samples, we must understand $G_{n}(L)$. The following shows a plot of $\left|G_{n+1}(K)\right| /\left|G_{n}(K)\right|$ for several knot types K

What is observed is that the ratio increases as n does, implying a faster than exponential growth. We can also see that the probability of a knotted grid increases to 1 as grid size increases

References

[1] Peter Cromwell, Embedding knots and links in an open book Basic properties, Mathematical Proceedings of the Cambridge Philosophical Society 119 (1996), no. 02, 309. [2] Neal Madras and Gordon Slade. The Self-Avoiding Walk, 1993

Acknowledgements

